Planification hiérarchique

Langages, résolution et apprentissage

Humbert Fiorino
Humbert.Fiorino@imag. fr
http://marvin.imag.fr/doku.php?id=members:fiorino:fiorino

18 janvier 2024

Laboratoire d'Informatique de Grenoble
Université Grenoble Alpes

o UCA
‘ Université
Grenoble Alpes

Humbert.Fiorino@imag.fr
http://marvin.imag.fr/doku.php?id=members:fiorino:fiorino

Intéréts des langages hiérarchiques

- Expressivité :
- PDDL : uniqguement des actions —> grounding + méthodes
heurisitques efficaces (Fast Forward etc.)
- Hiérarchie : notions de taches et de méthodes
- Récursivité
- Avantages :
- Répresentation de "recettes”/procédures telles qu’établies par les
experts du domaine
- Explicabilité, gestion de niveaux d'abstraction, planification
d’initiative mixte
- Guidage de la recherche
- Inconvénients :
- Quid du grounding et des heurisitiques ?

2/23

Grounding & Heuristics

- How it starts: a grounding procedure... propositional logic, optimizations,
compact binary representation etc.

- Task Decomposition Graphs: AND/OR graph

- Heuristics example: mandatory tasks = tasks that will unquestionably be
included in a partial plan when a given task is decomposed. For instance,
M(to) = {t3,t7, 85, 5}, M(tr) = {ts, &3, 1°5}, M(3) = {17, &5, 65}, M(te) = {t, t},
M(ts) = {t2, t2}, M(te) = {t3, tg}, M(t7) = {t5, 5} and M(tg) = {13, 5 }.

3/23

HDDL

- Need of language standardization

- Extension of PDDL vs. chronicle approaches (e.g. ANML etc.)

(:action pick—up
:parameters (?x — block)
:precondition (and (clear ?x) (ontable ?x) (handempty))

:effect (and (not (ontable ?x)) (not (clear ?x)) (not (handempty))
(holding ?x)))

(:method do—move

:parameters (?x — block ?y — block)
:task (do—move ?x 7y)

:precondition (and (clear ?x) (clear 7y)

(handempty) (ontable ?x))
:ordered—subtasks (and (t1 (pick—up ?x)) (t2 (stack ?x ?y))))

4/23

Durative Actions in HDDL

- Durative actions in HDDL

1. same formalism as in PDDL21
2. can be represented with two instantaneous events start and end
3. have durations

- Example of a simple durative action

(:durative-action action
:parameters (?x1 - t1 ?x2 - t2)
:duration (= ?duration 1.00) start(t) end(t)
:condition (and

(at start (p_start ?x1 ?x2))

— action a —
(at end (p_end ?x1 ?x2)) time
(over all (p_inv ?x1 ?x2))) L —— —!
seffect (and ?duration = end(t) - start(t)

(at start (e_start ?x1 ?x2))
(at end (e_end ?x1 ?x2))))

5/23

Durative Actions in HDDL

- Durative actions in HDDL

1. same formalism as in PDDL21
2. can be represented with two instantaneous events start and end
3. have durations

- Example of a simple durative action

(:durative-action action
:parameters (?x1 - t1 ?x2 - t2)
:duration (= ?duration 1.00) start(t) end(t)
:condition (and

p_start
(at start (p_start ?x1 ?x2)) action a
(at end (p_end ?x1 ?x2)) time
(over all (p_inv ?x1 ?x2))) L —— —!
seffect (and ?duration = end(t) - start(t)

(at start (e_start ?x1 ?x2))
(at end (e_end ?x1 ?x2))))

5/23

Durative Actions in HDDL

- Durative actions in HDDL

1. same formalism as in PDDL21
2. can be represented with two instantaneous events start and end
3. have durations

- Example of a simple durative action

(:durative-action action
:parameters (?x1 - t1 ?x2 - t2)
:duration (= ?duration 1.00) start(t) end(t)
:condition (and

p_end
(at start (p_start ?x1 ?x2)) .
-] action a .
(at end (p_end ?x1 ?x2)) time
(over all (p_inv ?x1 ?x2))) L —— —
seffect (and ?duration = end(t) - start(t)

(at start (e_start ?x1 ?x2))
(at end (e_end ?x1 ?x2))))

5/23

Durative Actions in HDDL

- Durative actions in HDDL

1. same formalism as in PDDL21
2. can be represented with two instantaneous events start and end
3. have durations

- Example of a simple durative action

(:durative-action action
:parameters (?x1 - t1 ?x2 - t2)
:duration (= ?duration 1.00) start(t) end(t)
:condition (and

p_inv
(at start (p_start ?x1 ?x2)) .
- . action a .
(at end (p_end ?x1 ?x2)) time
(over all (p_inv ?x1 ?x2))) L —— —
seffect (and ?duration = end(t) - start(t)

(at start (e_start ?x1 ?x2))
(at end (e_end ?x1 ?x2))))

5/23

Durative Actions in HDDL

- Durative actions in HDDL

1. same formalism as in PDDL21
2. can be represented with two instantaneous events start and end
3. have durations

- Example of a simple durative action

(:durative-action action
:parameters (?x1 - t1 ?x2 - t2)
:duration (= ?duration 1.00) start(t) end(t)
:condition (and

(at start (p_start ?x1 ?x2))

e_start

— action a —
(at end (p_end ?x1 ?x2)) time
(over all (p_inv ?x1 ?x2))) L —— —
seffect (and ?duration = end(t) - start(t)

(at start (e_start ?x1 ?x2))
(at end (e_end ?x1 ?x2))))

5/23

Durative Actions in HDDL

- Durative actions in HDDL

1. same formalism as in PDDL21
2. can be represented with two instantaneous events start and end
3. have durations

- Example of a simple durative action

(:durative-action action
:parameters (?x1 - t1 ?x2 - t2)
:duration (= ?duration 1.00) start(t) end(t)
:condition (and

e_end
(at start (p_start ?x1 ?x2)) .
- I action a .
(at end (p_end ?x1 ?x2)) time
(over all (p_inv ?x1 ?x2))) L —— —
seffect (and ?duration = end(t) - start(t)

(at start (e_start ?x1 ?x2))
(at end (e_end ?x1 ?x2))))

5/23

Toward Durative Methods

- Guiding idea: keep it as close as possible to PDDL syntax and
semantics
- A durative method has two dummy non durative actions that
represent the start and the end of the task achieved by the method

- To cope with time, we propose to extend method definition with:

1. precondition tagged by time specifier

2. extending the ordering constraints

3. duration constraints on method decomposition

4. constraints on method decomposition from PDDL 3.0

6/23

Toward Durative Methods

An abstract simple example

- Durative method preconditions —> same semantics as in durative actions

- Ordering constraints are extended to deal with <, >, <, > and =

(:durative-method m
:parameters (?x1 ?x2 - type)
stask (t ?x1 ?x2 ?x3)
:condition (and

(at start (p_start ?x1 ?x2)) — task t —
(at end (p_end ?x1 ?x2)) |

(over all (p_inv ?x1 ?x2))) t1

start(t) end(t)

:subtasks (and
(t1 (t1 ?x1 ?x2))
(t2 (t2 ?x1 ?x2))
(t3 (t3 ?2x1 ?x2))))
:ordering (and
(< end(t1) start(t3)
(< end(t2) start(t3))
(= end(t1) end(t2))))) 7123

N

L |
vV
duration = end(t) - start(t)

Toward Durative Methods

An abstract simple example

- Durative method preconditions —> same semantics as in durative actions

- Ordering constraints are extended to deal with <, >, <, > and =

(:durative-method m
:parameters (?x1 ?x2 - type)
stask (t ?x1 ?x2 ?x3) start(t) end(t)
:condition (and p_start

(at start (p_start ?x1 ?x2))
(at end (p_end ?x1 ?x2))

(over all (p_inv ?x1 ?x2))) t1

task t I

:subtasks (and
(t1 (t1 ?x1 ?x2))
(t2 (t2 ?x1 ?x2))
(t3 (t3 ?2x1 ?x2))))
:ordering (and
(< end(t1) start(t3)
(< end(t2) start(t3))
(= end(t1) end(t2))))) 7123

N

L |
vV
duration = end(t) - start(t)

Toward Durative Methods

An abstract simple example

- Durative method preconditions —> same semantics as in durative actions

- Ordering constraints are extended to deal with <, >, <, > and =

(:durative-method m
:parameters (?x1 ?x2 - type)

stask (t 7x1 ?x2 7x3) start(t) end(t)
:condition (and p_end
(at start (p_start ?x1 ?x2)) — task t -

(at end (p_end ?x1 ?x2)) |

(over all (p_inv ?x1 ?x2))) t1

:subtasks (and
(t1 (t1 ?x1 ?x2))
(t2 (t2 ?x1 ?x2))
(t3 (t3 ?2x1 ?x2))))
:ordering (and
(< end(t1) start(t3)
(< end(t2) start(t3))
(= end(t1) end(t2))))) 7123

N

L |
Vv
duration = end(t) - start(t)

Toward Durative Methods

An abstract simple example

- Durative method preconditions —> same semantics as in durative actions

- Ordering constraints are extended to deal with <, >, <, > and =

(:durative-method m
:parameters (?x1 ?x2 - type)

stask (t 7x1 ?x2 7x3) start(t) end(t)
:condition (and p_inv
(at start (p_start ?x1 ?x2)) — task t -

(at end (p_end ?x1 ?x2)) |

(over all (p_inv ?x1 ?x2))) t1

:subtasks (and
(t1 (t1 ?x1 ?x2))
(t2 (t2 ?x1 ?x2))
(t3 (t3 ?2x1 ?x2))))
:ordering (and
(< end(t1) start(t3)
(< end(t2) start(t3))
(= end(t1) end(t2))))) 7123

N

L |
Vv
duration = end(t) - start(t)

Toward Durative Methods

Adding durative constraints to decompositions

- Durative constraints may relate to the duration of the task or to a
particular subtask

- Durative constraints on particular subtasks can be rewritten in terms of
ordering constraints

- Example:

(:durative-method grab_image

:parameters (?s - satellite ?d1 ?d2 - image_direction)

:task (grab_image ?s ?d1 ?d2 ?i ?m)

:duration (and (<= ?duration (* (turn-time (2d1 2d2)) 2))
(<= duration(t2) duration(t3)))

:subtasks (and (t1 (turn_to ?s ?d1 ?d2))
(t2 (calibrate ?s ?i ?m))
(t3 (take_image ?s 2d2 ?i 2?m)))

:ordering (< end(t1) start(t3))

:constraints (and (not (= 2d1 2d2)))) /
8/23

Toward Durative Methods

Generalizing PDDL 3.0 constraints to method decompositions

- Why not using PDDL 3.0 trajectory constraints to define constraints on
method decompositions?

- Constraints on method decompositions are limited to the method scope

- Example:

(:durative-method method_observe
:parameters (?d1 ?d2 - image_direction
?s - satellite ?i - instrument ?m - mode)
:task (do_observation ?d2 ?m)
:duration (< (duration t1) (calib-time ?i))
:subtasks (and (t0 (activate_instrument ?s ?i))
(t1 (turn_to ?s 2d1 ?2))
(t2 (take_image ?s 2d ?2i 2m)))
:ordering (and (< t0O t2) (< t1 t2))
:constraints (and (not (= ?d1 ?7d2))
(at-most-once (pointing ?s 2d2))))

9/23

Open issues

1. What is the semantics of an empty durative method?

2. Is it interesting to enrich the ordering constraints to express
deadlines for the start and end of tasks?

3. Any other points?

10/23

Résolution par méthodes d’encodage

- Tree-REX: non-temporal totally-ordered HDDL with an
incremental SAT solver

- We have been investigating different approaches: STRIPS, SAT,
CSP, SMT, deordering etc. for temporal HDDL

- Example: thanks to HDDL grounding...

0O 1 2 3 4 5 6 7 8 9
e(L,i)
next(Li)

1/23

Résolution par méthodes d’encodage

Rules of Encoding
The initial state holds at the initial layer O at position 0:

/\ holds(p,0,0) A\ —holds(p,0,0) (1)

PESso péso
At each position j of the initial layer, the respective initial
task reductions are possible. Let T = (to, ..., tj,.. ., tk—1):
k—1
/\ V element(r, 0, j) 2
j=0 reR(t;)

12/23

Résolution par méthodes d’encodage

The last position of the initial layer contains a blank element:

element(blank, 0, k) 3)
At the last position of the initial layer, all goal facts hold:
/\ holds(p,0, k) @)
PEY

The presence of an action at some position ¢ implies its pre-
conditions at position ¢ and its effects at position ¢ + 1:

element(a,l,i) = /\ holds(p,1,1) 5)
pEpre(a)

element(a,l,i) = /\ holds(p, 1,3+ 1)
pEefft(a)

element(a,l,i) = /\ —holds(p,l,i+ 1)
pEeff(a)

13/23

Résolution par méthodes d’encodage

A reduction at some position ¢ implies its preconditions at
that position:
element(r,1,i) = /\ holds(p, 1, 1) (6)
pEpre(r)

Each action is primitive, and each reduction is non-primitive.
The following rules eliminate the possibility of an action and
a reduction to co-occur:

element(a, l,1) = primitive(l,7) @

element(r,1,1) = —primitive(l, 1)
If a fact changes, then either this position does not contain

an action yet or it contains an action which supports this fact
change. Such constraints are also called “frame axioms”.

holds(p,1,i) A —holds(p,l,i+1) =
= —primitive(l,1) V \/ element(a,l,7) (8)
pEeff~(a)
—holds(p,1,i) A holds(p,l,i+1) =
= —primitive(l,%) V \/ element(a, 1)
pEefft(a)

14/23

Résolution par méthodes d’encodage

At each position, all possibly occurring actions are mutu-
ally exclusive. (Note that this also includes the blank action
variable.) For each pair of actions a1, a2, we have:

—element(a1,l,1) V —element(az, 1, 1))

A fact p holds at some position ¢ if and only if it also holds
at its first child position at the next hierarchical layer.

holds(p,1,1) < holds(p,l + 1, next(l, 7)) (10)

If an action occurs at some position %, then it will also occur
at its first child position at the next hierarchical layer.

element(a,l,1) = element(a,l + 1, next(l, 1)) (11

If an action occurs at some position ¢, then all further child
positions at the next layer will contain a blank element.

/\ element(a,l,1) =
0<j<e(l,i)
= element(blank,l + 1,next(l,) + j) (12)

15/23

Résolution par méthodes d’encodage

If a reduction occurs at some position %, then it implies
some valid combination of its subtasks at the next layer. Let
subtasks(r) = (to,...,tx—1) and 0 < j < k. If ¢; is primi-
tive and accomplished by an action a:

element(r,1,7) = element(a,l + 1,next(l,3) + j) (13)

If ¢; is non-primitive and R(t;) are its possible reductions:

element(r,1,7) = \/ element(r', 1 + 1, next(l,4) + j)
' €R(t;)
14)
Any positions j at the next layer which remain undefined by
an occurring reduction are filled with blank symbols.

/\ element(r,1,1) = element(blank,l + 1,i + j)
E<j<e(li)
s)

To find a plan after n layers, we must ensure that all the po-
sitions of the last (i.e. the current) hierarchical layer n must
be primitive. Let s,, be the size of the array at layer n:

/\ primitive(n, 1) (16)
0<i<sn

16/23

Planification hybride

- TEP: hybrid planning —> temporal HDDL as input —>
partially-ordered plan with timestamps as output

- Solve all Cushing's categories

- First temporal + partially-ordered HDDL —> Non-temporal
partially-ordered HDDL solved by a planner with heuristics

- Then timestamps are computed with a CSP solver

start(a) end(a)
pre eff pre eff
post I post l
v _ ve time
S d=vy =V ______ L7

Figure 1: Timeline of a durative action a.

17/23

Planification hybride

Task: ta

pre:g
— — > post: (doing b)

eff: (doing a) —,
(doing b) -+

- pre: (doing b)
post: @

<
ts

eff: (not (doing a))

<

<

[}
]
I
Task: tb !

I
pre:g l

| — —» post: (doing a) ||
|

I

l

=

eff: (doing b)— - !,

-+ pre: (doing a)

—

h
i post: @
1
1

eff: (not (doing b))

|
|
|
|
|
|
1
|
|
|

(doing a -

18/23

Méthodes d'apprentissage automatique

Input Output

Sequences of

task names AMLSI - Action Models
and observable in PDDL or HDDL
states
Observed sequences of
Sequences tasks par_tial and noisy states_
tested ; resulting from the execution
es State Machine of the tested sequences of
to learn actions

Figure 2: AMLSI: Action Model Learning with State machine Interaction.

19/23

Méthodes d'apprentissage automatique

- AMLSI is based on grammar induction techniques (RPNI) + lifting
- Deal with noisy and partial observations (tabu search)
- Accuracy: ability to solve new problems

(;taLk ba) ,12\ (unamck ba)

) (put-down b)

(put down a)

-

(put-down a)

jck-up)
ek ey smmk 3 b) (unsmck 3 b) (stmk ab)
Merge 0 and 11
putrdown b)
ipmk up b))
piek-up a)

" (putdowna)

(pickup)

10 i1

(stack b a) H (unstack b a) H (stack b a)
13

(stack a b) 1 (unstack a b) o/ (stack a b)

Inoompaublc with I

(Final DFA

20/23

Méthodes d'apprentissage automatique

(do clear b)

(unstack ab) (put down a) start (plck up b) (stack b a)
o= U o
(stack ab) (pick-u up a) ‘\(pu\tf-down b) (unstack b a) : L
(do—put -on a b)*:- - (do-clear b)

(do-clear a) (do—ﬁuﬂbn a b) (do—dcax cl)

(do—put—on a b)

Figure 4: Apprentissage d'automates finis avec méthodes.

21/23

Perspectives

- Encodages pour HDDL temporel

- Validation/certification de domaines HDDL

22/23

Bibliographie

- Nicolas Cavrel, Damien Pellier, Humbert Fiorino. Efficient HTN to STRIPS
Encodings for Concurrent Planning. ICTAI 2023, p. 962-9609.

- Maxence Grand, Damien Pellier, Humbert Fiorino. An Accurate PDDL Domain
Learning Algorithm from Partial and Noisy Observations. ICTAI 2022, p. 734-738.

- D. Holler, G. Behnke, P. Bercher, S. Biundo, H. Fiorino, D. Pellier, R. Alford. HDDL - A
Language to Describe Hierarchical Planning Problems. In the proceedings of the
Conference on Artificial Intelligence (AAAI), 2020.

- D. Schreiber, D. Pellier, H. Fiorino, T. Balyo. Tree-REX: SAT-Based Tree Exploration
for Efficient and High-Quality HTN Planning. In the proceedings of ICAPS 2019, p.
382-390.

- D. Pellier, H. Fiorino. PDDL4J: A Planning Domain Description Library for Java.
Journal of Experimental & Theoretical Artificial Intelligence, pages 143-176,
volume 30(1), 2018.

- D. Ramoul, D. Pellier, H. Fiorino and S. Pesty. HTN Planning Approach Using Fully
Instantiated Problems. In the proceedings of the International Conference on
Tools in Artificial Intelligence (ICTAI), 2016. (Best Student Paper award)

23/23

